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Preface

In the Spring of 2011 and 2012, I taught an introductory course on algebraic geometry for the third (and
final) year BSc students at the Institute of Mathematics & Applications, Bhubaneswar. From the outset I
wanted to teach a "modern" yet introductory course, emphasizing on the commutative algebra and, with
out spelling it out as such, present the material as a zeroth level introduction to algebraic geometry in the
language pioneered by Weil, Chevalley and ultimately the school of Alexander Grothendieck. My idea was
to present a course that would add to the "mathematical culture" of our students rather than any specific
mastery over the (difficult) subject matter.

The brevity of these notes makes a detailed table of contents uncalled for; the reader will quickly understand
our "game plan" by browsing through this text. In preparing the lectures I have relied on many sources–
some of them are listed in the beginning of this text and some are acknowledged in-line in the lectures
themselves. The claim to any originality here is pointless and perhaps malicious, the only saving grace
perhaps being a slightly unconventional arrangement of the material presented.

I thank Professors Sudarshan Padhy and Swadheen Pattanayak of IMA Bhubaneswar for their interest in
the courses and encouragement towards writing the lectures up.

Bhubaneswar
July 26 2012
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Texts suggested for the whole course

1. D. Bump, Algebraic Geometry, Allied Publishers & World Scientific, 1998/2003.

2. W. Fulton, Algebraic Curves, freely available from the Web.

3. R.V. Gurjar and others, Elliptic Curves, TIFR and Narosa Publishing House, 2006.

4. I. Shafarevich, Basic Algebraic Geometry I, Springer.

5. Miles Reid, Undergraduate Commutative Algebra, CUP.

6. Miles Reid, Undergraduate Algebraic Geometry, CUP.
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Polynomials, valuations and local rings
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What is algebraic geometry?

(And for those of you are fans of The Big Bang Theory, no, I am not going to follow Sheldon Cooper and
start with a warm summer evening in ancient Greece!)

The elementary answer is quite simple: it is the study of spaces that can be represented
by a collection of polynomials.

A more sophisticated answer is it is a branch of mathematics where geometrical notions
are studied using the methods of commutative (and homological) algebra.

Ponder this: Before Descartes in the 16th century, geometry was studied using synthetic
notions introduced by Euclid thousands of years ago. Descartes introduced a tremen-
dously powerful method using using coordinates to mark points (on a plane, 3-space, ...)
which makes reproving Euclid’s theorems more or less trivial.

Algebraic geometry, at its heart, is a far-reaching extension of Descartes’ project through
a deep study of polynomials and rings of polynomials. For all practical and rigorous pur-
poses the right place to start would be with the work of André Weil in early 20th century
and then will the generalizations of Grothendieck and his school since the middle of the
20th century.
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Some properties of polynomials

Main reasons for this are:

1. At the most elementary level, we consider rings of functions on an "algebraic space"–
varieties or, more generally, schemes.

2. Whether the defining polynomials are, for example, irreducible or not determines
the geometry of the varieties. In general properties of the polynomials and rings of
polynomials determine the structure of these geometric objects.

So what we want to do is first study rings like k[X] or k[X1, . . . Xn] where all through

k is a commutative ring or a field

I will follow Lang’s Algebra (p.173 –).

NB: There is a (perhaps confusing!) terminological difference: what Lang calls factorial
would be our unique factorization domain (UFD).
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Aside: Those of you who really want to know what point of view we would adopt in this
course, the answer is: both a mix of valuation theoretic and ideal theoretic notions. The
first approach helps us understand the local properties better which the ideal theoretic
notions provide a robust algebraic framework for what follows.

The main results to cover in these first lectures:

1. Gauss’ lemma on the multiplicativity of content.

2. Eisenstein’s test of irreducibility.

3. Hilbert’s basis theorem: if A is Noetherian then A[X] is Noetherian.

4. and finally in a few different guises: Hilbert’s Nullstellensatz!
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Let A be a commutative ring and let f , g ∈ A[X], deg f , g ≥ 0. Assume that the leading
coefficient of g is a unit in A. Then we have the Euclidean algorithm: there exists q, r ∈
A[X] such that

f = gq + r,
deg r < deg g.

The proof of this fact follows from inducting on the degree and rewriting things (covered in
previous semesters).

Recall:

1. If A is a ring and a ∈ A, Aa is a left ideal of A called principal. If A is also commuta-
tive and every ideal of A is principal then we say that A is a principal ring. (We also
assume that A does not have zero divisors.

2. If every element of A admits a unique factorization into irreducibles then we call A
factorial or a unique factorization domain (UFD).
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Note that there is an alternative useful characterization of a UFD:
Remark 1. Let A be a ring. A is a UFD (i.e. every element of A can be factored uniquely
into irreducibles) if and only if all sequences of principal ideals

Aa1 ⊂ Aa2 ⊂ · · ·
are stationary; that is, there exists some m such that Aam = Aam+1.
Example 2.

Z[i], Z
[

exp
2πi

3

]
, . . .

Theorem 3. Let k be a field. Then the polynomial ring k[X] is principal.

Proof. Let a be a nonzero ideal of k[X] and g ∈ a of minimal degree. Let f ∈ a be
nonzero. By the Euclidean algorithm we can always write

f = gq + r

for some q, r ∈ k[X] with deg r < deg g. This gives the fact that r ∈ a but then r = 0 since
g is of minimal degree which gives us f = gq.

In fact k[X] is a UFD (from the fact that PID =⇒ UFD). NB: Lang needs an entire principal
ring but we have already absorbed that in our definitions.
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Recall that a root or zero of a polynomial f (x) ∈ A[X] is an element b ∈ B where B ⊂ A
is a subring and f (b) = 0. We have the following characterization of roots of polynomials.

Theorem 4. Let k be a field, f a polynomial in one variable, f (X) ∈ A[X], n := deg f (X) ≥
0. Then

1. f has atmost n roots in k.

2. If a is a root of f in k, then X− a divides f (X).

Proof. Note that in this case r in the Euclidean Algorithm must be zero. Also note: let ai
be a root and then induct on degree to get a factorization

(X− a1)(X− a2) · · · (X− an) for 1 ≤ i ≤ n

that divides f (X).
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Valuations and valuation rings

Let A be a UFD and F its quotient field (= field of fractions). Let p be irreducible in A.
Then each x ∈ F can be represented as

x = pr a
b

.

Definition 5. Define a function ordp from F to Z at some irreducible p by

ordp(x) = r.

They satisfy the obvious properties:

ordp(xy) = ordp(x) + ordp(y),
ordp(x + y) ≥ min{ordp(x), ordp(y)}.

Definition 6. A discrete valuation on a field F is a function v : F → Z such that

v(xy) = v(x) + v(y),
v(x + y) ≥ min{v(x), v(y)}.

Set also (as a convention): v(0) = +∞.
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The value group of v := image of v in Z. As as exercise, establish that

v
(x

y

)
= v(x)− v(y),

v(1) = v(−1) = 0,
v(xn) = nv(x).

Remark 7. ordp on F = Q is an example of a valuation, called the p-adic valuation.
Definition 8. The ring

Rv := {x ∈ F : v(x) ≥ 0}

is called the discrete valuation ring.

Some more definitions:

1. The group of units R∗v ⊂ Rv is defined as R∗v := {x ∈ F : v(x) = 0}.

2. The residue class field is defined as k(v) := Rv/Mv where Mv = {x ∈ F : v(x) > 0}.
Remark 9. k(v) is indeed a field since Mv is a maximal ideal. To see this directly, assume
otherwise, i.e., let there be an ideal M̃v containing Mv. Picking elements x̃ ∈ M̃v and
x ∈ Mv and using the fact that if v(x) < v(x̃) then v(x) = v(x + x̃) shows us that
Mv = M̃v.
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Local rings

Definition 10. Let A be a ring with a unique maximal ideal m. Such a ring is called a local
ring. The field A/m is called a residue field.
Example 11. The discrete valuation ring (definition 8) is an example of a local ring with a
fixed valuation v.
Proposition 12 (Atiyah-McDonald, prop. 1.6). (i) Let A be a ring and m 6= (1) be an ideal
of A such that every x ∈ A \m is a unit in A. Then A is a local ring and m its maximal
ideal. (ii) Let A be a ring and m a maximal ideal of A such that every element in 1 +m is
a unit in A. Then A is a local ring.

Proof. (i) Every ideal 6= (1) consists of nonunits, hence it is contained in m. So m is the
only maximal ideal of A. (ii) Let x ∈ A \m. Since m is maximal, the ideal generated by x
and m = (1), hence there exists y ∈ A and t ∈ m such that xy + t = 1 and so xy = 1− t
belongs to 1 +m and is therefore a unit. Now from (i) the result follows.
Example 13. A = k[x1, . . . , xn] with k a field. Then let f ∈ A be an irreducible polynomial.
By unique factorization, the ideal ( f ) is prime.
Example 14. A = Z. Every ideal in Z is of the form (m) for some m ≥ 0. The ideal (m)
prime iff m is prime. All the ideals (p) where p is a prime is maximal. Then Z/(p) is the
field with p elements.
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Local rings and power series; relationship with complex analysis

I follow Reid.

Let k be a field and define the ring of formal power series in variable X over k by k[[X]] by

k[[X]] := { formal power series in X with coefficients in k,

:= {
∞

∑
n=0

anXn : an ∈ k}.

If f = a0 + a1X + a2X2 + . . . is a power series then f has an inverse in k[[X]] iff a0 6= 0.
Why? Since here f = a0(1 + Xg) with some g ∈ k[[X]] and

f−1 = a−1
0 (1− Xg + X2g2− . . .).

We can check that this is a well-defined power series since the coefficient of Xn comes
only from the first (n + 1) terms of the infinite series. Therefore

f ∈ k[[X]] is a nonunit ⇐⇒ a0 = 0 ⇐⇒ f ∈ (X)

so k[[X]] is a local ring with maximal ideal (X).
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1. k[[X]] is Noetherian (a few classes ago!)

2. k[X] ⊂ k[[X]] and any polynomial g(X) with g(0) 6= 0 is invertible in K[[X]] so that
the local ring

k[X](X) = {h ∈ k(X) : h = f /g, f , g ∈ k[X], f not dividing g}

is a subring of k[[X]]. This inclusion takes a rational function h = f /g defined near
0 to its Taylor series at 0.

Recall that if k = R or C then we can talk about convergent power series. A definition
from analysis:
Definition 15. A power series

f =
∞

∑
n=0

anXn

in a variable X has a radius of convergence ρ if

|an| ≤ constant · ρ−n∀n

Positive radius of convergence = lim sup log |an|
n < ∞. This implies f is convergent on a

small disc around 0 and can be viewed as an analytic function near 0.
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Let R{X} or C{X} be power series with positive radius of convergence.
Remark 16. f−1 is an analytic function represented by a convergent power series if and
only if a0 6= 0. R{X} and C{X} are local rings with maximal ideal (X).
Remark 17. The local ring C{X} is the ring of germs of analytic (= holomorphic) functions
around 0. (Germ means that "every f ∈ C{X} is an analytic function on a neighborhood
U of 0".)

For most purposes C{X} is similar to C[[X]], something which is used quite extensively
to study "local properties" of varieties both over C or over other algebraically closed fields.
(By "local properties" I mean how the curve, surface, ... looks and behaves near a pre-
scribed set of points.)
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Gauss’ lemma– two equivalent proofs

Let F be a field with a valuation v and define v+ on F[x1, . . . , xn] by

v+(∑ ai1...in
xi1

1 · · · x
in
n ) = min{v(ai1...in

)}.
Proposition 18. For f , g ∈ F[x1, . . . xn],

v+( f g) = v+( f ) + v+(g).

The first proof goes as follows: We do the case of n = 1 (the case of just F[x]) and then
construct a map to the general case. First notice that in the n = 1 case, we can assume
f , g ∈ Rv[x]. This is true because:

v+(c f ) = v(c) + v+( f )

and since the definition involves taking a min (and this is just the n = 1 case!), can assume

v+( f ) = v+(g) = 0.

Now let

f (x) = amxm + · · ·+ a0,
g(x) = bnxn + · · ·+ b0.

17



Claim: there exists i and j such that ai and bj are units and ap and bq nonunits for p < i
and q < j. (This is true because our f and g are elements of Rv[x].) Now take the product
f (x)g(x) and we see that the coefficient of xi+j is a unit. Therefore v+( f g) = 0 and we
are done for n = 1.

In the general case, choose d > deg( f g) and map xi 7→ xdi−1
. This transforms

f (x1, . . . , xn) 7→ f ∗(x) := f (x, xd, . . . xdn−1

)

such that v+( f ) = v+( f ∗). Therefore the general problem is reduced to the n = 1 case
and we are done.

For the second proof (this one based on Lang), I remind you of something you might have
seen in your previous courses:
Definition 19. Let f (x) = a0 + a1x + . . . anxn. Define ordp f = min ordpai and write the
content of f to mean

cont( f ) := ∏
p

pordp f .

With this definition we have another (equivalent) form for Gauss’ lemma:
Proposition 20. Let A be a UFD and K its field of fractions. Let f , g ∈ K[x]. Then

cont( f g) = cont( f )cont(g).
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This is proved in the following way: Let us write f (x) = c f1(x) where c = cont( f ) and
f1(x) a primitive polynomial, i.e., with content 1. Write g in the same way: g = dg1,
d = cont(g). Then the statement boils down to showing that if f , g have content 1, then
f g also has content 1 and this is the same as showing that for each prime p, ordp( f g) = 0
(and hence through the fact that (something)0 = 1, we have the original statement!). Let

f (x) = anxn + · · ·+ a0, an 6= 0,
g(x) = bmxm + · · ·+ b0, bm 6= 0

be content 1 polynomials. Let p ∈ A be prime. If we can show that p does not divide all
the coefficients of f g, we are done. ( Why?)

Let r be the largest integer such that 0 ≤ r ≤ n, ar 6= 0 and p doesn’t divide ar. Similarly
let

bs be the coefficient of g farthest to the left and
bs 6= 0 such that p doesn’t divide bs.

The coefficient of xr+s in f (x)g(x) is

c = arbs + ar+1bs−1 + · · ·
+ ar−1bs+1 + · · ·

and p doesn’t divide arbs. However p divides every nonzero term since in each term there
will be some coefficient ai to the left of ar or some coefficient bj to the left of bs. Therefore
p does not divide c and we are done.
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Intuitively these two propositions and proofs are the same since

• valuation and content are “inverses" (metaphorically speaking!) since cont = 0 and
val = 1 are the same.

• this becomes manifest when in the second proof we reduce the statement to proving
ordp( f g) = 0.

• ultimately both proofs boil down to looking at the coefficient of the “cross term" xi+j.
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Theorem 21. If R is a UFD, then R[x1, . . . xn] is a UFD.

The proof goes in the following way: Since R[x1, . . . , xn] = R[x1, . . . , xn−1][xn], we should
just do the case of n = 1 and then proceed by induction. (n = 1 is the case x = x1.) Since
F[x] is principal (last lecture) for F a field of fractions of R, F[x] is UFD (PID =⇒ UFD.)
Therefore every f ∈ R[x] ⊂ F[x] can be written as

f = f1 · · · fr,

where fi are irreducibles in F[x]. For all irreducible p in R we have

0 ≤ ord+
p ( f ) = ord+

p ( f1) + · · · ord+
p ( fr).

We can assume that each ord+
p ( fi) ≥ 0 and p is irreducible over R. Then each fi is

irreducible in R[x].

Let f be irreducible in R[x] with f (x) dividing a(x)b(x) in R[x]. If deg( f ) = 0 then f is
irreducible in R and

0 < ord+
f (a(x)b(x)) = ord+

f (a(x)) + ord+
f (b(x)).
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Therefore f (x) divides a(x) when ord+
f (a(x)) > 0 or b(x) when ord+

f (b(x)) > 0. If
deg( f ) > 0 then ord+

p ( f ) = 0 for every irreducible p in R and therefore f is irreducible in
F[x] by the previous argument. Since F[x] is UFD, f (x) divides a(x) or b(x) so a(x) =
f (x)q(x) for example. Then

0 ≤ ord+
p (a(x)) = ord+

p ( f (x)) + ord+
p (q(x))

= ord+
p (q(x))

and q(x) in R[x]. Hence f (x) divides a(x) in R[x] with quotient q(x) and we are done.
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Some commutative algebra, algebraic sets
and the affine n-space
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Noetherian rings

A very good reference for the commutative algebra required for the course is chapter 1 of
D. Eisenbud’s Commutative algebra with a view towards algebraic geometry. I shall follow
that chapter as well as Lang.

The basic goal would be a result in classical algebraic geometry which says that an alge-
braic variety (to be defined later!) has only finitely many irreducible components. There
are two purely algebraic results that lead upto this, both due to David Hilbert: (1) The
Basis Theorem and (2) The Nullstellensatz (German for "theorem of zeros").

At the heart is the notion of a Noetherian ring (named after Emmy Noether) which has a
few equivalent definitions.
Definition 22. A ring R is said to be Noetherian

1. if every ideal of R is finitely generated.

2. if R satisfies satisfies the ascending chain condition (ACC) which says that all chain
of ideals in R terminate. In other words, for every chain of ideals in R

a1 ⊂ a2 ⊂ . . .
there exists some m ∈ Z+ such that am = am+1.
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Proposition 23. The two definitions in definition 22 are indeed equivalent.

Proof. If a is an ideal of R then by successively choosing elements fi of a we get a chain
of ideals

( f1) ⊂ ( f1, f2) ⊂ . . .
that can be made to ascend forever (unless one of them is a.) Thus if R has ACC then a
must be finitely generated. Conversely, if

a1 ⊂ a2 ⊂ . . .

is a strictly ascending chain of ideals of R and the ideal
⋃

i ai has a finite set of generators
then these generators must all be contained in one of the aj and thus aj = a and the chain
terminates at aj.

This is the same as saying that every nonempty collection of ideals in R has a maximal
element.
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The Hilbert Basis Theorem

Theorem 24. If R is Noetherian, then the ring of polynomials R[x] is Noetherian.

Proof. Let I ⊂ R[x] be an ideal. We need to show that I is finitely generated. Choose
a sequence of elements f1, f2, . . . ∈ I in the following way. Let f1 be a nonzero element
of the least degree in I. For i ≥ 1, if ( f1, . . . fi) 6= I then choose fi+1 to be an element of
least degree among those in I but not in ( f1, . . . fi), If ( f1, . . . , fi) = I then stop choosing.
Let aj be the initial coefficients of f j. Since R is Noetherian the ideal J = (a1, a2, . . .)
of all the ai produced is finitely generated. We may choose a set of generators from
among ai themselves. Let m be the first integer such that a1, . . . am generate J. We claim
I = ( f1, . . . fm).

Contrary to our process, chose an element fm+1. Write am+1 = ∑m
j=1 ujaj for some uj ∈ R.

Since the degree of fm+1 is atleast as great as the degree of any of the f1, . . . , fm we may
define a polynomial g ∈ R having the same degree and initial term as fm+1 by the formula

g =
m

∑
j=1

uj f jxdeg fm+1−deg f j ∈ ( f1, . . . fm).

The difference fm+1 − g is in I but not in ( f1, . . . fm) and has degree strictly less that the
degree of fm+1. This contradicts the choice of fm+1 as having minimal degree.
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Remark 25. Even if R itself is Noetherian there may exists a subring S ⊂ R which may
not be Noetherian (Bonus HW).

The basis theorem gets its name from the following related result:

Proposition 26. Given any sequence of elements f1, f2, . . . ∈ R[x] there is a number m
such that for each n > m there is an expression fn = ∑m

i=1 ai fi with ai ∈ R. This is
equivalent to saying that R[x] is Noetherian.

To study local analytic geometric properties, the following form of the Basis Theorem is
very useful. Let A[[x]] is ring of formal power series with coefficients in A.

Theorem 27. If A is Noetherian, then A[[x]] is also Noetherian.
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Proof. (Griffiths–Harris, Lang) Let u be an ideal of A[[x]]. We let ai be the set of elements
of A such that a ∈ ai is the coefficient of xi in a power series

axi + terms of higher degree
lying in u. Then ai is an ideal of A and ai ⊂ ai+1. Then the ascending chain of ideals stop:

a0 ⊂ a1 ⊂ a2 ⊂ . . . ⊂ ar = ar+1 = . . .
Let aij ( i = 0, . . . , r and j = 1, . . . , ni) be the generators of the ideal ai and let fij be the
power series in A having aij as beginning coefficient. Given f ∈ u starting with a term of
degree d, say d ≤ r, we can find elements c1, . . . , cnd ∈ A such that

f − c1 fd1
− . . . cnd fdnd

starts with a term of degree ≥ d + 1. Through induction, we can assume d > r. We then
use a linear combination

f − c(d)1 xd−r fr1− . . . c(d)nr
xd−r frnr

to get a power series starting with a term of degree d > r. This power series can be
expressed as a linear combination of fr1, . . . , frnr by means of the coefficients

g1(x) =
∞

∑
ν=d

c(ν)1 xν−r, . . . , gnr(x) =
∞

∑
ν=d

c(ν)nr
xν−r,

and we see that fij generate our ideal u as was to be shown.
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Algebraic sets and rings of functions

We fix an algebraically closed field k (= C to make things concrete). Everything would be
with respect to this field. I will follow chapter 1 of R. Hartshorne’s Algebraic Geometry.
Definition 28. An affine n-space over k, denoted as An

k or just An, is the collection of all
n-tuples of elements of k, to wit, (a1, . . . , an) where ai ∈ k for all 1 ≤ i ≤ n. ai is referred to
as a coordinate of An. A typical element P ∈ An is called a point.

Elements of the polynomial ring A := k[x1, . . . , xn] are interpreted to be functions

An → k

in the following way. Let f (P) := f (a1, . . . , an). The zeros of a polynomial f ∈ A are
defined as Z( f ) := {P ∈ An : f (P) = 0}. For a subset T ⊂ A, the zero set is

Z(T) = {P ∈ An : f (P) = 0 for all f ∈ T}.
For a ⊂ A an ideal generated by T, Z(T) = Z(a).

This definition shows that Z(T) is a collection of common zeros of f1, . . . , fr.
Remark 29. Since A is Noetherian, a has a finite set of generators. These furnish the
polynomials f1, . . . , fr.
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Definition 30. A subset Y of An is an algebraic set if there exists a subset T ⊆ A such
that Y = Z(T).

Remark on notation: what Hartshorne (and we) call Z, Fulton in his Algebraic Curves
book call V.

Examples (all for k = C):

1. Z(Y2− X(X2− 1)) ⊂ A2

2. Z(Y2− X2(X + 1)) ⊂ A2

3. Z(W2− (X2 + Y2)) ⊂ A3

4. Z(Y2− XY− X2Y + X3) ⊂ A2
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Properties of algebraic sets

We will follow Fulton’s Algebraic Curves.

Proposition 31. The union of two algebraic sets is algebraic. The intersection of any
family of algebraic sets is algebraic set. The empty set and the whole affine space is
algebraic.

Proof. If Y1 = Z(T1) and Y2 = Z(T2) then Y1 ∪ Y2 = Z(T1T2) (the product of elements of
T1 by elements of T2). If P ∈ Y1 ∪ Y2 then either P ∈ Y1 or P ∈ Y2 so P is a zero of every
polynomial in T1T2. Conversely if P ∈ Z(T1T2) and let P /∈ Y1 then there is an f ∈ T1 such
that f (P) 6= 0. Now for any g ∈ T2, ( f g)(P) = 0 implies g(P) = 0 so that P ∈ Y2.

If Yα = Z(Tα) is any family of algebraic sets, then
⋂

Yα = Z(
⋃

Tα) so
⋂

Yα is also an
algebraic set. Finally ∅ = Z(1) and the whole space An = Z(0).
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Let k be a field.
Definition 32. For any subset X ⊂ An,

I(X) := { f ∈ k[x1, . . . , xn] : f (a1, . . . , an) = 0 for all (a1, . . . an) ∈ X}.
Definition 33. An algebraic set Z ⊂ An is reducible if

Z = Z1 ∪ Z2

where Z1, Z2 ⊂ An and Zi 6= An where i = 1, 2. An algebraic set is irreducible if this is
not the case.
Proposition 34. An algebraic set Z is irreducible if and only if I(Z) is prime.

Proof. (Forward) If I(Z) is not prime the suppose F1F2 ∈ I(Z), Fi /∈ I(Z). Then

Z = (Z ∩ Z(F1)) ∪ (Z ∩ Z(F2))

and Z ∩ Z(Fi) ⊂ Z so Z is reducible.

(Reverse) Conversely if Z = Z1 ∪ Z2, Zi ⊂ Z, the I(Z) ⊂ I(Zi). Let Fi ∈ I(Zi) but
Fi /∈ I(Z). Then F1F2 ∈ I(Z) so I(Z) not prime.
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Proposition 35. Let Z be an algebraic set of An. Then there are unique irreducible
algebraic sets Z1, . . . Zm such that

Z = Z1 ∪ · · · ∪ Zm

and Zi 6= Zj for i 6= j.

Proof. Let

I := {algebraic sets V ⊂ An : V is not a union of a finite no. of irreducible algebraic sets}.
We have to show I = ∅. Assume otherwise– let Z be a minimal member of I . Since
Z ∈ I it is not irreducible so Z = Z1 ∪ Z2 and Zi ∈ I . So Zi = Vi1

∪ · · ·Vimi
with

Vij irreducible. But V =
⋃

i,j Vij so we obtain a contradiction. Therefore any algebraic set
Z = Z1∪ · · · ∪Zm where Zi is irreducible for all 1 ≤ i ≤ m. To prove the uniqueness of this
decomposition– let Z = W1 ∪ · · ·Wm be another decomposition. Then Zi =

⋃
i(Wj ∩ Zi)

so Zi ⊂ Wj(i) for some j(i). Similarly Wj(i) ⊂ Zk for some k. But Zi ⊂ Zj =⇒ i = j so
Zi = Wj(i). Similarly each Wj equals some Vi(j).
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Closed algebraic subsets of An

Definition 36. A closed subset of An is a subset X consisting of all common zeros of a
finite number of of polynomials with coefficients in k.
Example 37. All closed subsets X of A1. Such a set of given by a system of equations
f1(x) = . . . = fm(x) = 0 for x = (x1, . . . , xn). If all the fi are identical to zero then
X = A1. If the fis don’t have any common factor, then they don’t have any common root
and X does not have any points. If the highest common factors of all the fi’s is D(x) then
D(x) = (x− α1) · · · (x− αn) and X consists of finitely many points x = α1, . . . , x = αn.
Example 38. Let α ∈ Ar be a point with coordinates (α1, . . . , αr) and β ∈ As be another
point with coordinates (β1, . . . , βn). Then take α and β to a point in Ar+s with coordinates
(α1, . . . , αr, β1, . . . , βs). Thus we can identify Ar+s with the pairs (α, β). The maps

Ar+s −→ Ar,
Ar+s −→ As

are called projection maps. Let X ⊂ Ar and Y ⊂ As be closed. Then the set of pairs
(x, y) ∈ Ar+s with x ∈ X and y ∈ Y is called the product of X and Y and denoted as
X×Y . This is also a closed set.
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Regular functions

I follow Shafarevich.
Definition 39. Let X ⊂ An. A function f defined on X with values in k is called regular if
there exists a polynomial F(x) with coefficients in k such that f (x) = F(x) for all x ∈ X.

This definition is generalized in the following way: let X ⊂ An and Y ⊂ Am.
Definition 40. A map f : X → Y is regular if there exists m regular functions f1, . . . , fm on
X such that

f (x) = ( f1(x), . . . fm(x))
for all x ∈ X.

Note that for assuming a function regular is a very strong condition– we are essentially
only allowing polynomial functions on An. Also note: a regular function then is just a
regular map X → A1 = k.
Example 41. The projection map (x, y) 7→ x is a regular map.
Example 42. The map f (t) = (t2, t3) is a regular map of the line A1 to the curve y2 = x3.
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Intermezzo example: zeta function of a variety

Let X ⊂ An
Fp

. The points of X correspond to the solutions of the system of congruences
Fi(T) = 0 mod p. Consider φ : An → An defined by

φ(α1, . . . , αn) = (α
p
1 , . . . , α

p
n).

This is a regular map taking X ⊂ An to itself. To see this, if α ∈ X, that is Fi(α) = 0 and
since Fi(T) ∈ Fp[T] it follows from the fact that we are dealing with finite fields:

Fi(α
p
1 , . . . , α

p
n) = (Fi(α1, . . . , αn))

p = 0

The map φ : X → X is called the Frobenius map. Why is this map so important?

Answer: points of X with coordinates in Fp are characterized among all points of X as the
fixed points of φ– the solutions to the equation

α
p
i = αi

are all the elements of Fp.
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We can iterate this map– α ∈ Fpr are characterized by

αpr

= α

and so points x ∈ X with coordinates in Fpr are fixed points of φr.

Let
νr := #{points x ∈ X with coordinates in Fpr}

These numbers are understood as coefficients of a generating function

PX(t) =
∞

∑
r=1

νrtr.

Theorem 43 (without proof!, I believe due to Dwork). PX(t) is a rational function of t

The main point is that this function PX(t) associated to a closed set X is very similar to
the Riemann zeta function

ζ(s) = ∑
1
ns .

We want to demonstrate this fact!
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Note

1. If x ∈ X is a point with coordinates in Fpr then X contains all points which are in the
image of the i-th iterate of the Frobenius η = {φi(x)}. This is called a cycle and the
number r of points of η the degree of η.

2. Group together all the νr points into cycles– the coordinates of any of these points
generate Fpd ⊂ Fpr and it is a fact that d|r.

These gives us a formula
νr = ∑

d|r
dµd

where µd is the number of cycle of degree d. Then we perform the following manipulations:

PX(t) =
∞

∑
r=1

∑
d|r

dµdtr,

=
∞

∑
d=1

dµd

∞

∑
m=1

tmd,

=
∞

∑
d=1

µd
dtd

1− td .
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Introduce the function

ZX(t) = ∏
η

1
1− tdegη

.

Then PX(t) can be written as

PX(t) =
Z
′

X(t)
ZX(t)

t.

This is exactly like the Riemann zeta function:

pdegη := N(η),
t = p−s.

Then

ZX(t) = ζX(s) = ∏
η

1
1− N(η)−s.

This is exactly analogous to the formula for the Riemann zeta:

ζ(s) = ∏
p

1
1− p−s

for p a prime number.
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The amazing thing is that the equivalent of the Riemann Hypothesis (RH) (all nontrivial
zeros of ζ(s) have real part 1

2) was shown to be true for ZX(t) in 1972 by Deligne (which got
him the Fields Medal!) The proof uses extremely hard techniques of algebraic geometry
and number theory.

Big open and extremely hard question: can we adapt Deligne’s proof to give a proof for
the RH for the actual Riemann ζ(s)?
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Isomorphism of closed subsets of the affine space

I follow Shafarevich.

Definition 44. A regular map f : X → Y of closed sets is an isomorphism if it has an
inverse, that is, if there exists a regular map g : Y → X such that f ◦ g = 1 and g ◦ f = 1.
Remark 45. We have

X ' Y ⇐⇒ k[Y] ' k[X].

This is another way of saying that the category of closed subsets of the affine space is
isomorphic to a subcategory of the category of commutative k-algebras. To determine
which subcategory, I remind you that a k-algebra A is isomorphic to a coordinate ring
k[X] of some closed subset X iff A has no nilpotent elements other than 0 and is finitely
generated as an algebra over k.
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Example 46. The generalized parabola y = xk is isomorphic to the line A1 and the iso-
morphism is given by the maps f (x, y) = x and g(t) = (t, tk).

Example 47. This is a nonexample. The projection f (x, y) = x of the hyperbola xy = 1
to the x-axis is not an isomorphism/one-to-one correspondence: the hyperbola does not
contain any point (x, y) for which f (x, y) = 0.

Example 48. The map f (t) = (t2, t3) of the line to the curve y2 = x3 is seen to be a
one-to-one correspondence. It is, though, not as isomorphism since the inverse is of the
form g(x, y) = y/x and the function y/x is not regular at 0.

Example 49. . This is an important example that introduces the diagonal. Let X, Y ⊂ An

closed subsets. Consider
X×Y ⊂ A2n

and the linear subspace ∆ ⊂ A2n defined by

t1 = u1, . . . , tn = un,

called the diagonal.
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Consider the map

X ∩Y
φ−→ A2n,

z 7→ φ(z) = (z, z).

φ(z) is a point in X×Y ∩ ∆. The map

φ : X ∩Y → X×Y ∩ ∆

is an isomorphism between X ∩Y and X×Y ∩ ∆.

We can, in this way, study the intersection of two closed sets by studying a different closed
set with a linear subspace.
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Bonus material: theorems of Abhyankar–Moh and C.P. Ramanujam

Closed subsets of the affine space have completely nontrivial properties. As an example:
Theorem 50 (Abhyankar–Moh). A curve X ⊂ A2 is isomorphic to A1 iff there exists an
automorphism of A2 that takes X to a line.

Note that an automorphism of A2 is an isomorphism to itself!

The group Aut A2 is generated by the maps

x′ = αx,
y′ = βy + f (x).

Here α, β 6= 0 and f is a polynomial.

A very important open problem in this area is:
Conjecture 51 (Jacobian conjecture). Let k be of characteristic 0. A map given by

x′ = f (x, y), y′ = g(x, y)
is an automorphism of A2 iff the Jacobian determinant

∂( f , g)
∂(x, y)

is a nonzero constant.
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There is an amazing theorem characterizing the affine plane as an algebraic variety, due
to the brilliant Indian algebraic geometer C.P. Ramanujam:

Theorem 52 (Ramanujam, Ann. Math. 1971). Let X be a nonsingular surface over C. Let
X be contractible and simply connected at infinity. Then X ' A2.

Note what Ramanujam’s theorem does is to show

When is it that if X×A1 ' A3, X ' A2?

The answer is no in general even for k = C and depends on the topology of X in a very
important way.
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The Nullstellensatz

Nice summary of the main idea (Eisenbud):

Gauss’ fundamental theorem of algebra establishes the basic link between al-
gebra and geometry. It says that a polynomial in one variable over C, an algebra
object, is determined upto a scalar factor by the set of its roots (with multiplic-
ties). Hilbert’s Nullstellensatz extends this link to certain ideals of polynomials
in many variables.

Recall that for any subset X ⊂ An, we defined

I(X) := { f ∈ k[x1, . . . , xn] : f (a1, . . . , an) = 0 for all (a1, . . . an) ∈ X}.
Let A(X) denote the k-algebra of functions on X defined by the coordinate functions xi.
We have

A(X) = k[x1, . . . , xn]/I(X)

(This is clear from the definition of A(X) and I(X)!)
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Caution: Not every homomorphic image of A(x) → X is a coordinate ring of some set.
For example let f d = 0 for some f ∈ A(X) and a fixed d. Now by evaluation at a point
p ∈ X, we have f d(p) = f (p)d = 0 so f (p) is nilpotent for all p ∈ X. But since X is a
subset of kn, they are all identical to zero and A(X) is then said to be reduced. (In general
if all nilpotent elements of a given ring are zero we call that ring reduced).

Let R be a commutative ring.
Definition 53. The radical of an ideal I ⊂ R then

rad I := { f ∈ R : f m ∈ I for some integer m}.
Lemma 54. rad I is an ideal of R.

Proof. If f m and gn = 0 then (a f + bg)n+m = 0 since it is sum of polynomials each
divisible by either f n or gm.

A radical ideal is an ideal I such that I = rad I.

Combining the definitions that R is reduced iff the only nilpotent elements are zero and
that of a radical ideal, we see that

R/I is a reduced ring iff I is a radical ideal
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Finally (!) we have a statement of the Nullstellensatz.
Theorem 55. Let k be an algebraically closed field. If I ⊂ k[x1, . . . , xn] is an ideal then

I(Z(I)) = rad I.
Thus, the correspondences I 7→ Z(I) and X 7→ I(X) induce a bijection between the
collection of algebraic subsets of An

k = kn and radical ideals of k[x1, . . . , xn].

An interesting corollary of the Nullstellensatz (justifying the quote from Eisenbud in the
beginning of the lecture):
Corollary 56. A system of polynomial equations

f1(x1, . . . , xn) = 0,
. . .

fm(x1, . . . , xn) = 0
over an algebraically closed field k has no solutions in kn if and only if 1 can be expressed
as a linear combination

1 = ∑ pi fi

with polynomial coefficients pi.

Proof. Granted the Nullstellensatz (to be proved after we have seen its use in the following
lectures), if Z( f1, . . . , fm) = ∅ then 1 is in the radical of ( f1, . . . , fm). The other direction
follows directly from the definition of a radical ideal.
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Abstract algebraic varieties and affine
algebraic varieties
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The Nullstellensatz (contd.)

Another corollary:
Corollary 57. If k is an algebraically closed field and A a k-algebra then A = A(X) for
some algebraic set X iff A is reduced and finitely generated as a k-algebra.

Proof. (Eisenbud, p.35) If A = A(X) for some X ⊂ kn, then A = k[x1, . . . , xn]/I(X)
is generated as a k-algebra by x1, . . . , xn. Since I(X) is a radical ideal, A is reduced.
Conversely, if A is finitely generated k-algebra, then after choosing generators, write A =
k[x1, . . . , xn]/I for some ideal I. Since A is reduced, I is a radical ideal. This I = I(Z(I))
by the Nullstellensatz and we can take X = Z(I).

Another very important consequence of the Nullstellensatz is:
Corollary 58. Let X ⊂ An be an algebraic set. Every maximal ideal of A(X) is of the
form mp = (x− a1, . . . , xn− an)/I(X) for some p = (a1, . . . , an) ∈ X. More specifically we
have a bijection

{points of X} ↔ {maximal ideals of A(X)}.

Before we prove this corollary, let me remark on a result in analysis that is exactly in the
spirit of this corollary.
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Proposition 59 (Gelfand–Naimark). Let S be a compact Hausdorff space (Hausdorff =
“given two points P and Q there exists disjoint open sets UP and UQ containing P and Q
respectively.") Let R be the ring of complex-valued C0 functions on S. Then the maximal
ideals of R are in bijection with the points of S.

Look at any book on functional analysis, e.g. Rudin’s Functional analysis.
Lemma 60. Any maximal ideal is radical. Also every prime ideal is radical. (NB: Maximal
implies prime.)

The proof of the lemma is left as an exercise.

Proof. (of corollary 58, Eisenbud p.35) The maximal ideals of A(X) correspond to the
maximal ideals of k[x1, . . . , xn] containing I(X) so just consider the case X = An, A(X) =
k[x1, . . . , xn]. By lemma 60, a maximal ideal m is radical so I(Z(m)) = m by the Nullstellen-
satz. But if p ∈ Z(m) then m ⊂ mp and since m is assumed to be maximal m = mp. There-
fore the maximal ideals of A(X) are in 1-1 correspondence to p = (a1, . . . , an) ∈ X.
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For the proof of the Nullstellensatz we need a few more definitions (!)
Definition 61. A ring R is called Jacobson if every prime ideal of R is the intersection of
maximal ideals.

Our strategy to prove the Nullstellensatz would be the following

1. Claim that a stronger condition holds, involving Jacobson rings

2. Deduce the previous corollary 58 from this claim.

3. Conclude the proof of the Nullstellensatz from these two facts.

Theorem 62 (strong Nullstellensatz). Let R be Jacobson. If S is finitely generated as an
R-algebra then S is Jacobson. If n is a maximal ideal then m := n ∩ R is maximal ideal of
R and S/n is a finite field extension of R/m.

52



Proof. (of corollary 58 , Eisenbud p. 134) We note that k[x1, . . . , xr]/mp = k so mp is
maximal. Let the map

k[x1, . . . , xr] −→ k[x1, . . . , xr]/mp = k

be evaluation at p.Thus I(X) ⊂ mp iff p ∈ X. We know that the maximal ideals of A(X)
are the maximal ideals of S := k[x1, . . . , xr] containing I(X), taken modulo I(X) it only
remains to show that every maximal ideal of S has the form mp for some p.

Let n be a maximal ideal of S. Then by previous (unproved) theorem 62 with R = k, S/n is
algebraic over k/(n∩ k) = k. Since k is algebraically closed S/n = k. Let ai be the image
of xi under the map S → S/n = k and let p = (a1, . . . , ar). This implies mp is contained in
n. Since mp is maximal, m− p = n.

Proof. Theorem 55. From the corollary 58 we know that the points of Z(I) correspond
to the maximal ideals of k[x1, . . . , xn] containing I. Thus I(Z(I)) is the intersection of all
maximal ideals containing I. From theorem 62 the ring S = k[x1, . . . , xn] is Jacobson so
every prime ideal that contains I is an intersection of maximal ideals (from the definition
of Jacobson). Thus I(Z(I)) is equal to the intersection of all prime ideals containing I.
This is just rad (I) (HW: why?).
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The space of maximal ideals: a topological version

Let A be a (commutative, unital) ring. By Specmax(A) we mean the set of all maximal
ideals of A. (But, later on we would be interested in Spec (A), the set of all prime ideals
of A.)

Let X be a compact Hausdorff space and let C(X) denote the ring of all real-valued
continuous functions on X. For each x ∈ X, let mx be the set of all f ∈ C(X) such that
f (x) = 0.
Proposition 63. The ideal mx is maximal.

Proof. mx is maximal since it is the kernel of a surjective homomorphism C(X) → R

which maps f to f (x).
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If X̃ denotes Specmax(C(X)) we have defined a map

µ : X −→ X̃,
x 7→ mx.

Theorem 64. µ is a bijection (in fact, a homeomorphism of X onto X̃.)

The proof of this theorem goes as follows: Let m be a maximal ideal of C(X) and let Z(m)
be the set of common zeros of the functions in m; that is

Z(m) = {x ∈ X : f (x) = 0 for all f ∈ m}.
Suppose that Z = ∅. Then for each x ∈ X, there exists fx ∈ m such that fx(x) 6= 0. Since
fx is continuous, there exists an open neighborhood Ux of x ∈ X on which fx doesn’t
vanish.

Since X is assumed to be compact, there is a finite number of neighborhoods Ux1, . . . Uxn

which cover X. Let
f = f 2

x1
+ · · ·+ f 2

xn
.

Then f doesn’t vanish at any point of X and so is a unit in C(X). But this contradicts
f ∈ m hence Z 6= ∅. Let x ∈ Z. Then m ⊆ mx because m is maximal. Hence µ
is surjective. By Urysohn’s lemma, the continuous functions separate the points in X,
Hence x 6= y =⇒ m 6= mx. Therefore, µ is injective. QED.
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Let f ∈ C(X) and let

U f = {x ∈ X : f (x) 6= 0},
Ũ f = {m ∈ X̃ : f /∈ m}.

One sees from the definitions that

µ(U f ) = Ũ f .

The open sets U f (resp. Ũ f ) forms a basis for a topology of X (resp. X̃) and µ is a
homeomorphism.

Upshot: The space X can be reconstructed from the ring of functions on C(X). An ex-
tremely deep generalization of this idea lies in the description of a space only in terms
of sheaves associated to that space, an idea that generalizes algebraic geometry to very
abstract levels (due to Grothendieck and his school.)
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The prime spectrum and Zariski topology

Let A be a commutative ring and let X denote the set of all prime ideals of A. For each
subset E of A, let V(E) denote the set of all prime ideals which contain E.
Proposition 65. The following holds:

1. If a is an ideal generated by E, then V(E) = V(a) = V(rad(A)).

2. V(0) = X, V(1) = ∅.

3. If Ei, i ∈ I, a family of subsets of A then

V(
⋃
i∈I

Ei) =
⋂
i∈I

V(Ei).

4. V(a∩ b) = V(a) ∪V(b).

From this proposition we see that V(E) satisfies the axioms for closed sets in a topological
space. This is called the Zariski topology. The space X is written as Spec(A). This
space is also the base topological space for an abstract algebraic object called an affine
prescheme.
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Affine algebraic varieties

Definition 66. Let k be an algebraically closed field and let

fα(x1, . . . , xn) = 0

be a set of polynomial equations in n-variables with coefficients in k. The set X of points
p = (p1, . . . , pn) ∈ kn which satisfy these equations is an affine algebraic variety.

Consider the set of all polynomials g ∈ k[x1, . . . , xn] with the property that g(p) = 0 for all
p ∈ X. This set is an ideal I(X) in the polynomial ring and is called the ideal of the variety
X. The quotient ring

A(X) = k[x1, . . . , xn]/I(X)

is the ring of polynomial functions on X because two polynomials g, h define the same
polynomial function on X if and only if g− h vanishes at every point of X, that is, if and
only if g− h ∈ I(X).

Let ηi be the image of xi in A(X). The ηi, 1 ≤ i ≤ n, are the coordinate functions on X.
If p ∈ X then ηi(p) is the i-th coordinate of x. A(X) is generated as a k-algebra by the
coordinate functions, and is called the coordinate ring (or affine algebra) of X.
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Similar to the topological version of the previous lecture, for each p ∈ X define mp be the
ideal of all f ∈ A(X) such that f (p) = 0. The following proposition is left as homework:

Proposition 67. This ideal mp is a maximal ideal of A(X).

Theorem 68. Let X̃ = Specmax(A(X)) and define a map map X
µ−→ X̃ given by p 7→ mp.

This map is an isomorphism.

Proof. The map µ is injective: if p 6= q we must have pi 6= qi for some i and ηi − xi is in
mp but not in mq so that mp 6= mq. So show that µ is surjective, appeal to a version of the
Nullstellensatz proved a couple of classes ago which said that every maximal ideal in the
ring k[x1, . . . , xn] is of the form (x1− a1, . . . , xn − an) for points (a1, . . . , an).

59



The prime spectrum and irreducible varieties

Recall
Definition 69. Let A be a (commutative) ring (with 1). Then

Spec(A) := {prime ideals ofA}.

I claimed in the previous lectures that Spec(A) is a topological space with a very specific
topology, the Zariski topology. Today we are going to spell out the relationship between
Spec(A) and affine varieties (following Reid’s undergraduate commutative algebra book).
Proposition 70. Let A = k[x1, . . . , xn]. Then

Spec(A) = {irreducible varieties X ⊂ kn}.

This proposition follows from the fact that a variety X is irreducible if and only if I(X) is
prime.
Proposition 71. Let A = k[x1, . . . , xn] be a finitely generated k-algebra (k algebraically
closed). Let J be the ideal of relations between x1, . . . , xn such that A = k[x1, . . . , xn]/J.
There is a bijection

Spec(A)↔ {irreducible subvarieties X = Z(J)}.
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Proof. Note (from previous lectures) that maximal ideals are in bijection with points of
Z(J). Prime ideals of K[x1, . . . , xn] containing J so by the previous proposition every prime
ideal P of A is of the form P = I(X) mod J for an irreducible variety X ⊂ kn with J ⊂ P =
I(X). This, by the properties of Z, is same as saying

Z(P) ⊂ Z(J)

and now Z(P) = Z(I(X)) = X.

So to put everything together again (sec. 5.4 of Reid UCA):
Definition 72. A geometric ring A is a finitely generated k-algebra which is reduced. This
is the same as saying that

A = k[x1, . . . , xn]/I
where I = rad I. (This is an important definition since it shows you how reduced can be
reinterpreted in terms of radical ideals.)

So the geometric case is the datum (Z, A) where Specmax(A) = Z (with Zariski topology)
and A is a ring of functions on Specmax(A)
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Now for the case that the ring A is arbitrary (i.e. not necessarily geometric). Then:

1. Spec(A) is a set.

2. (this is extremely important!) for any P ∈ Spec(A) define f (P) to be the residue of f
modulo P:

f : P 7→ f (P) = f mod P ∈ A/P
⊂ Frac(A/P) = k(P).

This is interesting because as we change P around we get different k(P). This is bit
like vector fields taking values in different tangent spaces as we change the points
around.

3. The Zariski topology on Z (as before) is exactly analogous to the Zariski topology on
Spec(A).
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Regular functions and function fields

I follow Hartshorne. Also recall definition 10 and the subsequent discussion.
Definition 73. Let Y be a variety and denote by O(Y) the ring of all regular functions on
Y. If P ∈ Y is a point define the local ring of P on Y denoted as OP,Y or simply OP to
be the germ of regular functions on Y near P. Put differently, an element of OP is a pair
(U, f ) where U is an open subset of Y containing P and f is a regular function on U with
the identification

(U, f ) ∼ (V, g)
if f = g on U ∩V.

One has to check that OP is indeed a local ring– that is, it has a unique maximal ideal.
This ideal is m, the set of germs of regular functions that vanish at P. (If f (P) 6= 0 then
1/ f is regular in some neighborhood of P.) Note

OP/m ' k.

Definition 74. If Y is a variety, define the function field K(Y) of Y as: every element of
K(Y) is an equivalence class of pairs (U, f ) where U is a nonempty open subset of Y, f
is a regular function on U and where (U, f ) ∼ (V, g) if f = g on U ∩V. These elements
of K(Y) are called rational functions on Y.
Proposition 75. K(Y) is a field.
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Proof. Y is irreducible since any two nonempty sets have a nonempty intersection. K(Y)
is a ring since we can define addition and multiplication the usual way. Let (U, f ) ∈ K(Y)
with f 6= 0. Then we can restrict f to the open set V = U \ U ∩ Z( f ) where it never
vanishes so 1/ f is regular and therefore (V, 1/ f ) is the inverse of (U, f ).

So we have three basic objects associated to a variety Y:

1. The ring of regular or global functions O(Y).

2. The local ring OP at a point P ∈ Y.

3. The function field K(Y).

By restricting functions, we have

O(Y) −→ OP −→ K(Y)

These maps are injective.
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Introduction to dimension

I follow Hartshorne.

One final general notion that needs to be discussed and developed before we move on to
the specific cases of curves and surfaces is that of dimension of an affine variety.

Slogan: Dimension is a Local Notion!

We will develop the local properties first which allows us to give a definition of dimension.
The key notion here is going to be local rings and transcendence degree.
Definition 76. Let L be a field extension of K. The transcendence degree of L is the
largest cardinality of an algebraically independent subset of L over K. L/K is called
purely transcendental if there exists a subset S of L which is algebraically independent
over K and with L = K(S).
Example 77. The field of rational functions in n variable with coefficients in k is purely
transcendental over k with transcendence degree n. The transcendence basis can be
{x1, . . . , xn}.
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Definition 78. Let A be a ring. The height of a prime ideal p ⊂ A is the supremum of all
integers n such that there exists a chain

p0 ⊂ p1 ⊂ · · · ⊂ pn = p

of distinct prime ideals.
Definition 79. The Krull dimension of a ring A is the supremum of heights of all prime
ideals of A.
Proposition 80. If Y is an affine algebraic subset then the dimension of Y is equal to the
Krull dimension of its affine coordinate ring A(Y).

Proof. If Y affine algebraic in An then the closed irreducible subsets of Y correspond to
elements in Spec(A) for A = k[x1, . . . , xn] containing I(Y). They also correspond to the
prime ideals of A(Y). Therefore dim Y is the length of the longest chain of prime ideals in
A(Y), giving us the dimension.
Remark 81. The notion of dimension of an affine algebraic variety X makes sense only
when X is irreducible. If X is not irreducible, then write

X := X1 ∪ · · · ∪ Xk.

Then
dim X = max dim Xi

for 1 ≤ i ≤ k.
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Assume the following statements to be true or look up their proofs in any commutative
algebra book.
Theorem 82. Let B be an integral domain which is a finitely generated k-algebra (for k
some field not necessarily algebraically closed). Then

1. The dimension of B is equal to the transcendence degree of the quotient field K(B)
of B over k.

2. For any prime ideal p in B we have

height p+ dim B/p = dim B.

Theorem 83 (Krull’s Hauptidealsatz). Let A be a Noetherian ring and let f ∈ A be an
element neither a unit nor a zero divisor. Then every minimal prime ideal p containing f
has height 1

Finally also:
Proposition 84. A Noetherian integral domain A is a unique factorization domain iff every
prime ideal of height 1 is principal.
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With these (unproven) facts at hand we demonstrate some first properties of dimension
of affine varieties.
Proposition 85. The dimension of An is n.

Proof. Remember we do need a proof here since we can’t always think of An as Cn. From
a previous proposition we know that the dimension of the polynomial ring k[x1, . . . , kn] is
n (An has coordinate ring k[x1, . . . , xn]!) and this can be concluded from (1) of a previous
theorem showing that the dimension = transcendence degree
Proposition 86. A variety Y in An has dimension n− 1 if and only if it is a zero set Z( f )
of a single nonconstant irreducible polynomial in A = k[x1, . . . , xn].

Proof. Let f be irreducible– we know Z( f ) is a variety. The ideal associated to this variety
is the prime ideal p = ( f ). By the Krull Hauptidealsatz, p has height 1 so by the formula
(B integral domain finitely generated as a k-algebra)

height p+ dim B/p = dim B,

Z( f ) has dimension n− 1. In the other direction, a variety of dimension n− 1 correspond
to a prime ideal of height 1. Now A is a UFD so p is principal necessarily generated by
the irreducible polynomial f . Hence Y = Z( f ).
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Introduction to projective varieties
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Projective varieties: general facts

I follow Hartshorne Chapter 1, section 2. Let k algebraically closed all through.
Definition 87. The projective n-space, denoted as Pn

k or simply Pn, is the set of equiva-
lence classes of n + 1 tuples (a0, . . . , an) of elements of k not all zero, under the equiva-
lence relation

(a0, . . . , an) ∼ (λa0, . . . , λan)

for all λ ∈ k nonzero.

This is same as saying that Pn is the quotient of An+1 \ (0, . . . , 0) with the equivalence
relation that identifies all points on a given line through the origin.

We now want a more "algebraic" definition of a projective space in terms of zeros of a
homogeneous polynomial.
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Graded rings and homogeneous polynomials

Write A = k[x1, . . . , xn] be the polynomial ring in n variables.
Definition 88. A graded ring is a ring A with a decomposition

A =
⊕
d≥0

Ad

of A into a direct sum of abelian groups (Z-modules!) Ad such that for any Ad · Ae ⊆ Ad+e.

An element of Ad is called a homogeneous element of degree d. Every element of Ad can
be written as a finite sum of homogeneous elements.
Definition 89. An ideal a ⊂ S is homogeneous if

a =
⊕
d≥0

(
a
⋂

Sd
)
.

Remark 90. The ring A = K[x1, . . . , xn] can be made graded in the following way: take Ad
to be the set of all linear combinations of monomials of total weight d in x0, . . . , xn.
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Let f be homogeneous of degree d. Then by definition

f (λa0, . . . , λan) = λd f (a0, . . . , an)

so whether f is zero or not depends only on the equiv class of (a0, . . . , an).

Definition 91. The zeros of homogeneous polynomials f can be defined as

Z( f ) = {P ∈ Pn : f (P) = 0}
for T a set of homogeneous elements of A. The zero set of T is defined as

Z(T) = {P ∈ Pn : f (P) = 0 for all f ∈ T}.

For a a homogeneous ideal of T,
Z(a) = Z(T)

where T is the set of all homogeneous elements of a.

All the usual notions as in the case of affine subsets hold true for projective spaces–
irreducibility etc. Also note: since A is Noetherian any set of homogeneous elements T
has a finite subset f1, . . . , fr such that Z(T) = Z( f1, . . . , fr).
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A subset Y of Pn is an algebraic set if there exists a set T of homogeneous elements of
A such that Y = Z(T). With this we have a fundamental definition:
Definition 92. A projective (algebraic) variety is an irreducible algebraic subset in Pn. A
quasiprojective variety is an open subset of a projective variety.
Example 93. The Segre Embedding is defined in the following way– let

ψ : Pr ×Ps −→ PN,
(a0, . . . , as)× (b0, . . . , bs) 7→ (. . . , aibj, . . .)

with N = rs + r + s. This map is injective and well defined (HW:check!) Then image ofψ
is a subvariety of PN.

Why? Because let a be the kernel of the homomorphism

k[{zij}] → k[x0, . . . , xr, y0, . . . , ys],
zij 7→ xiyj

where zij are the homogeneous coordinates of PN. Then image of ψ = Z(a).
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So we have defined Pn
k to be a set of (n + 1)-tuples (x0, . . . , xn) ∈ kn+1 modulo the equiv-

alence
(x0, . . . , xn) ∼ (αx0, . . . , αxn), α ∈ k∗.

The tuple (x0, . . . , xn) is called the set of homogeneous coordinates.

Pn
k can be covered with n + 1 subsets U0, . . . , Un where

Ui = {points represented by homogeneous coordinates (x0, . . . , xn), xi 6= 0}

Each Ui is naturally isomorphic to kn:

Ui −→ kn,

(x0, x1, . . . , xn) 7→
(x0

xi
,

x1

xi
, . . . ,

xn

xi

)
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The projective Nullstellensatz

Definition 94. A closed algebraic set in Pn
k is a set consisting of all roots of a finite collec-

tion of homogeneous polynomials fi ∈ k[x0, . . . , xn] =: A, 1 ≤ i ≤ n.

This is OK since if we have two sets of homogeneous coordinates (x0, . . . , xn), (αx0, . . . , αxn)
then

f (x0, . . . , xn) = 0 ⇐⇒ f (αx0, . . . , αxn) = 0.
As we have seen a homogeneous ideal is an ideal generated by a finite set of homoge-
neous polynomials. If a is such an ideal then define

Z(a) := {P ∈ Pn
k : if x = (x0, . . . , xn) homogeneous coordinates of P, f (x) = 0 for all f ∈ A}

If Σ ⊂ Pn
k is a closed algebraic set then define

I(Σ) = {ideal generated by all homogeneous polynomials that vanish identically on Σ}

Theorem 95 (The projective Nullstellensatz). The sets Z and I set up a bijection between
the set of closed algebraic subsets of Pn

k and the set of all homogeneous ideals a ⊂
k[x0, . . . , xn] such that

a = rad a

except for one ideal a = (x0, . . . , xn).
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The proof goes as follows: If Σ is a closed algebraic subset then Z(I(Σ)) = Σ. Therefore
Z and I give a bijection between closed algebraic subsets of Pn

k and those homogeneous
ideals such that a = I(Z(a)).

Claim: these ideals are their own radical. Moreover ∅ = Z((x0, . . . , xn)) and hence
1 ∈ I(Z((x0, . . . , xn))) so (x0, . . . , xn) does not satisfy the above equation. Let a be an
ideal which is its own radical. Let Z∗(a) be a closed algebraic set corresponding to a

in the affine space An+1
k with coordinates x0, . . . , xn. Then Z∗(a) is invariant under the

substitutions
(x0, . . . , xn) 7→ (αx0, . . . , αxn)

for all α ∈ k∗. Therefore either (1) Z∗(a) is empty or (2) Z∗(a) equals the origin only, or
(3) Z∗(a) is a union of lines through the origin. Through the affine Nullstellensatz theorem
55 we know a = I(Z∗(a)). For the 1st case, this implies a = k[x0, . . . , xn] hence I(Z(a))–
always containing a– must equal a since there is no bigger ideal. For the 2nd case, this
implies a = (x0, . . . , xn) which has already been excluded. For the 3rd case, if f is a
homogeneous polynomial then f vanishes on Z(a) iff f vanishes on Z∗(a). Therefore by
the affine Nullstellensatz, if f vanishes on Z(a) then f ∈ a, that is

I(Z(a)) ⊂ a.

The other inclusion follows straight from the definition. QED.
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